
Custom Views and Appearances

OpenText™ Content Server

This document is part of the Content Server User Online Help
documentation list. If conflicts exist, the Online Help supersedes
this document.

LLESAPP210100-UGD-EN-01

Custom Views and Appearances
OpenText™ Content Server
LLESAPP210100-UGD-EN-01
Rev.: 20. Oct. 2020

This documentation has been created for software version 21.1.
It is also valid for subsequent software releases unless OpenText has made newer documentation available with the product,
on an OpenText website, or by any other means.

Open Text Corporation

275 Frank Tompa Drive, Waterloo, Ontario, Canada, N2L 0A1

Tel: +1-519-888-7111
Toll Free Canada/USA: 1-800-499-6544 International: +800-4996-5440
Fax: +1-519-888-0677
Support: https://support.opentext.com
For more information, visit https://www.opentext.com

Copyright © 2020 Open Text. All Rights Reserved.
Trademarks owned by Open Text.

One or more patents may cover this product. For more information, please visit https://www.opentext.com/patents.

Disclaimer

No Warranties and Limitation of Liability

Every effort has been made to ensure the accuracy of the features and techniques presented in this publication. However,
Open Text Corporation and its affiliates accept no responsibility and offer no warranty whether expressed or implied, for the
accuracy of this publication.

https://support.opentext.com
https://www.opentext.com
https://www.opentext.com/patents

Table of Contents
1 Working with Custom Views .. 5
1.1 Creating and Administering Custom Views .. 5

2 Working with Appearances .. 11
2.1 Adding and Editing Appearances ... 11
2.2 Administering Appearances ... 16

3 Working with JavaScript Functions for Custom Views
and Appearances ... 17

3.1 OTvar Replacement Variables ... 17
3.2 Replacement Variables by Component ... 18
3.3 OTmacro: Macros ... 20
3.4 OTfunc: Helper Functions .. 24
3.5 User Customizations ... 24
3.6 Adding a JavaScript Function to a Custom View or Global

Appearance .. 26

LLESAPP210100-UGD-EN-01 OpenText™ Content Server iii

Chapter 1

Working with Custom Views

A Custom View lets you apply your own “look and feel” to Content Server. Many
users use this feature to make a container or workspace look and act like a typical
Web page. Many organizations use Custom Views to make certain containers or
workspaces look like other organizational Web sites or publications.

1.1 Creating and Administering Custom Views
A Custom View is an item type that contains HTML code. When you add a
Custom View to a Workspace, Folder, Project, Task List, or Compound Document,
that HTML code is displayed as part of the interface. The Custom View is inserted
between the navigation menus and the items in the container or Workspace. You can
keep the customview.html file in your Folder or Workspace, and prevent the
Custom View from appearing by disabling it. When you disable a Custom View, it
will appear in the Folder list but will not appear as part of the Folder or Workspace's
interface.

The first step in adding a Custom View is to create the HTML file that defines the
Custom View, along with any other files, such as image files or style sheets. By
default, a Custom View can contain the following:

• HTML, JavaScript, VBScript, Java applets or any other code that can be
interpreted by a web browser. However, your administrator may restrict your
ability to add certain content.

• Links to other items in Content Server or to other Web pages.

• References to image, audio, or other files that are stored either in Content Server
or in a directory on any other accessible web server.

• Saved searches in Content Server that other users can add to their Favorites or to
reuse your search criteria, or enable you to define the display priority of custom
search forms. For more information about using Custom Views with saved
searches, see OpenText Content Server - Search (LLESWBB-UGD).

Because the contents of a Custom View are inserted within the HTML file that
delivers the interface, a web browser ignores tags such as <TITLE>, <BODY>, or
<FRAMESET>. This means that there are limits to the types of code you can include.
For example, you cannot create frames in a Custom View.

Note: You can add a resource folder to the same location as the Custom View
to store images and other files that the Custom View uses. To prevent
accidental deletion of these files, and help you maintain an organized
workspace, you should consider hiding the Custom View and the resource
folder. For more information about hiding items, see OpenText Content Server -
Get Started (LLESRT-UGD).

LLESAPP210100-UGD-EN-01 OpenText™ Content Server 5

The ability to create and manage Custom Views is usually restricted to certain users
or groups. To add a Custom View, you must have the object creation privilege for
Custom Views, as well as the Add Items and Modify permissions on the appropriate
containers. However, you do not need permission to modify any subitems that the
Custom View may affect. To modify a Custom View that was added by another
user, you need the Modify permission on the Custom View.

Using Templates to Create Custom Views

You can create templates based on existing Custom Views in Content Server or
based upon a file you have stored on your computer. When you add a template, it
does not automatically become the Custom View, you must then add a Custom
View based upon that template and ensure that it is enabled.

If your administrator has added Custom View templates to the Templates Volume,
you will be able to access the templates when you create a Custom View. Templates
can also be added to any Workspace or Folder that you have the Add Item
permission.

Administering Custom Views

You determine which users or groups a Custom View should apply to by setting
permissions on the Custom View. For example, you can:

• Apply the Custom View to all users by assigning the Custom View the See
Contents permission. This enables public access for the Custom View.

• Apply the Custom View only to specific users by granting those users or groups
the See Contents permission.

• Apply the Custom View to all project participants by granting coordinators,
members, and guests of a project the See Contents permission for that Custom
View.

• Apply the Custom View only to project participants with a specific role by
granting coordinators, members, or guests of a project the See Contents
permission for that Custom View.

For more information about permissions, see OpenText Content Server - Get Started
(LLESRT-UGD).

Note: New Custom Views are enabled by default, which means they
automatically appear without having to enable them. If multiple Custom
Views reside in the same container, they will appear based on which name
comes first alphabetically. All others will be ignored, unless they are manually
enabled.

Chapter 1 Working with Custom Views

6 Custom Views and Appearances LLESAPP210100-UGD-EN-01

1.1.1 To Add a Custom View
To add a custom view:

1. On the Add Item menu, click Custom View.

2. On the Add: Custom View page, do one of the following:

a. Click Existing, click Browse to navigate to the HTML file you created that
defines the Custom View, and then click Open.

b. Click Template, click Browse Content Server... to navigate to the template
file that defines the Custom View, and then click Open.

3. Type a name for the Custom View in the Name field.

If your system has multiple languages installed and enabled, click the click to
edit multilingual values button to edit the names in the other, enabled,
languages.

4. Optional In the Description field, type a description for the Custom View.

If your system has multiple languages installed and enabled, click the click to
edit multilingual values button to edit the descriptions in the other, enabled,
languages.

5. Optional In the Categories field, click Edit to either select or add a Category to
apply to this Custom View.

6. Content Server will save your new Custom View, by default, in the Enterprise
Workspace. To change the default location, in the Create In field, click Browse
Content Server. Choose Select next to a new location.

7. Click Add.

Note: If the HTML file contains references to other files, such as images, you
must add those files separately.

1.1.2 To Enable or Disable a Custom View
To enable or disable a custom view:

• Click the Functions icon for the customview.html, and then click Enable or
Disable.

1.1. Creating and Administering Custom Views

LLESAPP210100-UGD-EN-01 OpenText™ Content Server 7

1.1.3 To Create a Custom View Template
To create a custom view template:

1. Click the Functions icon for the customview.html file for which you want to
create a template, and then click Make Template.

2. On the Add: Custom View Template page, type a name for the template in the
Name field.

3. In the Source area, do one of the following:

a. Click Custom View, click Browse to navigate to the customview.html file
you want the template created from, and then click its Select link.

b. Click File, click Browse to navigate to the .xml file you want the template
created from, and then click Open.

4. Specify any other general item settings.

5. Click Add.

Tip: You can also create a template from an existing template by clicking the
Custom View template's Functions icon, and then clicking Create From. When
you create a template this way, you must specify a new name for it before
clicking the Add button.

1.1.4 To Add a Custom View from a Template
To add a custom view from a template:

1. On the Add Item menu, click Custom View.

2. On the Add: Custom View page, click Template, click Browse Content Server,
navigate to the Custom View template you want to add, and then click its Select
link.

3. Type a name for the Custom View in the Name field.

If your system has multiple languages installed and enabled, click the click to
edit multilingual values button to edit the names in the other, enabled,
languages.

4. Optional In the Description field, type a description for the Custom View.

If your system has multiple languages installed and enabled, click click to edit
multilingual values to edit the descriptions in the other, enabled, languages.

5. Optional In the Categories field, click Edit to either select or add a Category to
apply to this Custom View.

6. Content Server will save your new Custom View, by default, in the Enterprise
Workspace. To change the default location, in the Create In field, click Browse
Content Server. Choose Select next to a new location.

Chapter 1 Working with Custom Views

8 Custom Views and Appearances LLESAPP210100-UGD-EN-01

7. Click Add.

1.1. Creating and Administering Custom Views

LLESAPP210100-UGD-EN-01 OpenText™ Content Server 9

Chapter 2

Working with Appearances

An Appearance is a container that stores documents and HTML code.
Appearances enable you to customize certain locations in Content Server, much as
you would design a Web page. Appearances are useful in situations like the
following:

• To make the interface conform to the established graphic design standard used
by your organization. Customizations can include static content in the form of
custom graphics, text, and links to external resources.

• To simplify the interface for certain users or groups by hiding some of the
controls or tools in a workspace, project, or folder.

• To embed the interface in another application framework, suppressing the
display of everything except the actual content from Content Server.

• To enhance a Workspace, Project, or Folder to display dynamic content that is
derived from the page and tailored to the role of the user.

• To enable the personalization of a Workspace, Project, or Folder that is used by a
particular group, such as a department.

The ability to add Appearances is usually restricted. For more information, see
“Administering Appearances” on page 16.

2.1 Adding and Editing Appearances
There are two types of Appearances you can add to help you customize the
interface:

• Global Appearances are available system-wide and can only be added to the
Appearances Volume. Global Appearances are applied consistently throughout
Content Server for specific users.

• Location-Based Appearances can be applied the following ways:

– Non-Cascading, which applies the Appearance only to the container in which
it is added.

– Cascading, which applies the Appearance to the current container in which it
is added and to any sub-containers. This type of Appearance can also be
applied only to a specific set of users or groups.

– Cascade to Contents, which applies the Appearance to the container and the
immediate contents of the container, but does not apply it to the any of the
child containers.

LLESAPP210100-UGD-EN-01 OpenText™ Content Server 11

– Cascade to Level Below Only, which applies the Appearance to the
immediate sub-containers, but not the container itself or any descendants of
the container or sub-containers.

– Cascade to all Levels Below Only, which applies the Appearance to all of the
sub-containers and levels below it, but not the container itself.

An Appearance is separated into an Overview page and a Workspace page, on
which you define or edit the Appearance. After you add an Appearance, you define
settings and layout on its Overview page, and add content, such as images, to its
Workspace page. The ability to add and edit Appearances is usually restricted. For
more information, see “Administering Appearances” on page 16.

The Overview page of an Appearance is divided into the following sections:

• Settings

• Layout & Content

• Workspace

Settings

This section displays the type and status of the Appearance. The Appearance type is
one of: Global, Cascading, or Non-Cascading. Cascading or Non-Cascading can only
be set for Location-based Appearances. The Appearance status can be set to either
Enabled or Disabled.

Layout & Content

This section contains text boxes for each custom content area specified by the
selected layout. Each text box contains the HTML code that defines the custom area.

Note: You can also include JavaScript, VBScript, or any other code that can be
interpreted by a web browser.

Appearance layouts are defined by a number of pre-configured tables that surround
the content area in the center of a page. You can choose from five different layouts:

• Layout 1 lets you specify three custom areas around the content area: top left, top
center, and center left.

• Layout 2 lets you specify eight custom areas around the content area: top left, top
center, top right, center left, center right, bottom left, bottom center, and bottom
right.

• Layout 3 lets you specify two custom areas around the content area: top center
and bottom center.

• Layout 4 lets you specify one custom area around the content area: center left.

• Custom allows you to define any table structure you want. This layout does not
put any areas inside table cells.

Chapter 2 Working with Appearances

12 Custom Views and Appearances LLESAPP210100-UGD-EN-01

You edit each content area using the built-in text editor. A text editor is provided for
each content area defined by the layout. Each text document is stored in a Layout
Content folder, which is added to the Appearance workspace page by default, and
bears the name of its associated section. Content Server retains versions of each text
document used to maintain custom content areas.

This section also includes Header and Content Server Components areas. The
Content Server Components area, lists any of the standard interface elements of a
Content Server page that are enabled for the Appearance. These elements are:

• Header

• Search Bar

• Enterprise Menu

• News Player

• Add Item

• Navigation

• Sidebar

• Footer

Workspace

This section provides a detailed view of the items contained in the Appearance's
workspace. You must open the workspace itself in order to work with the items.
Unlike with other workspaces, you can only add folders, documents, and text
documents to an Appearance workspace. Items on an Appearance workspace page
are always sorted by name, you cannot change the sort order.

2.1.1 To Open the Appearances Volume
To open the Appearances volume:

• In the Appearances Administration section of the Content Server
Administration page, click the Open the Appearances Volume link.

2.1.2 To Add an Appearance
To add an Appearance:

1. Do one of the following:

a. To add a Location-Based Appearance, click Add Item. Select Appearance
Folder from the list.

b. To add a Global Appearance, click Add Item. Select Global Appearance
from the list.

2. On the Add: Appearance page, type a name for the Appearance in the Name
field.

2.1. Adding and Editing Appearances

LLESAPP210100-UGD-EN-01 OpenText™ Content Server 13

If your system has multiple languages installed and enabled, click the click to
edit multilingual values button to edit the names in the other, enabled,
languages.

3. Optional In the Description field, type a description for the Appearance.

If your system has multiple languages installed and enabled, click the click to
edit multilingual values button to edit the descriptions in the other, enabled,
languages.

4. Optional In the Categories field, click Edit to either select or add a Category to
apply to this Appearance.

5. Content Server will save your new Appearance, by default, in the Enterprise
Workspace. To change the default location, in the Create In field, click Browse
Content Server. Choose Select next to a new location.

6. Click Add.

2.1.3 To Edit Appearance Settings
To edit Appearance settings:

1. Click the Appearance's Functions icon, and then choose Open.

2. On the Appearance Overview page, click Settings.

3. If you are editing a Location-Based Appearance, click one of the following in the
Type list:

• Non-Cascading

• Cascading

4. Click either the Enabled or Disabled radio button.

5. Click Submit.

2.1.4 To Edit Appearance Layout
To edit an Appearance layout:

1. Click the Appearance's Functions icon, and then choose Open.

2. On the Appearance Overview page, click Layout & Content.

3. In the Layout field, click one of the following radio buttons:

• Layout 1

• Layout 2

• Layout 3

• Layout 4

Chapter 2 Working with Appearances

14 Custom Views and Appearances LLESAPP210100-UGD-EN-01

• Custom

4. Click Submit.

2.1.5 To Edit Appearance Components
To edit Appearance components:

1. Click the Appearance's Functions icon, and then choose Open.

2. On the Appearance Overview page, click Content Server Components.

3. On the Edit Appearance Components page, clear any of the following to
exclude the associated interface component from the Appearance:

• Header

• Search Bar

If the Search Bar check box is selected, you must also make a selection from
the Search Bar list.

• Enterprise Menu

• News Player

• Add Item

If the Add Item check box is selected, you also have the option of selecting
the Add Document Button and / or the Add Folder Button check boxes.

• Navigation

• Sidebar

• Footer

4. Click Submit.

2.1.6 To Open an Appearance Workspace
To open an Appearance Workspace:

1. Click the Appearance's Functions icon, and then choose Open.

2. On the Appearance Overview page, click the Open Workspace icon, .

2.1. Adding and Editing Appearances

LLESAPP210100-UGD-EN-01 OpenText™ Content Server 15

2.2 Administering Appearances
The ability to add and modify Appearances is restricted to certain users or groups
known as Branding Administrators. As a Branding Administrator you set permissions
on the Appearance. In setting the permissions, you determine to which users or
groups an Appearance should apply. For example, you can:

• Apply the Appearance to all users by assigning the Appearance the See Contents
permission. This enables public access for the Appearance.

• Apply the Appearance only to specific users by granting those users or groups
the See Contents permission.

• Apply the Appearance to all project participants by granting coordinators,
members, and guests of a project the See Contents permission for that Appearance.

• Apply the Appearance only to project participants with a specific role by
granting coordinators, members, or guests of a project the See Contents
permission for that Appearance.

Note: When a user has permissions on more than one Appearance, the
Appearance whose name comes first alphabetically takes precedence.

To become a Branding Administrator, you must have the following:

• The object creation privilege for Appearances.

• The Add Items and Modify permissions on the appropriate containers.

To add Global Appearances, you also need the Add Items permissions on the
Appearances Volume. In addition, to modify an Appearance that was added by
another user, you need the Modify permission on the Appearance. You do not need
permission to modify any subitems that an Appearance may affect.

For more information about permissions, see OpenText Content Server - Get Started
(LLESRT-UGD). For information about adding and editing Appearances, see
“Adding and Editing Appearances” on page 11.

Chapter 2 Working with Appearances

16 Custom Views and Appearances LLESAPP210100-UGD-EN-01

Chapter 3

Working with JavaScript Functions for Custom
Views and Appearances

Content Server provides a group of JavaScript classes that can be used to help
customize Appearances and Custom Views. The following sections describe the
classes, variables, and formats used by the classes.

3.1 OTvar Replacement Variables
Replacement variables are used to replace the variable class with actual data from
Content Server once the page is loaded. You can use replacement variables in HTML
and in JavaScript.

OTvar Replacement Variables in HTML

In HTML a replacement tag has a format of: <ot:OTvar_component_variablename/
>.

The livelink component, for example, contains replacement variables with
information about the Content Server system, including the <ot:OTvar_livelink_
supportPath/> tag. This tag is replaced by the relative path to the Content Server
support virtual folder when Content Server displays the page.

Example: If you add Location of my graphic file: <ot:OTvar_livelink_
supportPath>home/mygraphic.gif
 to a Custom View, a Content Server instance
with an img virtual folder displays it as Location of my graphic file: /img/home/
mygraphic.png

To add an image that is located in the Content Server support folder, include <img
src="{ot:OTvar_livelink_supportPath}myImage.jpg"> in your Custom
View. It automatically becomes , presuming
that the URL Prefix for the /support folder is set to img. The URL Prefix is specified
by the Content Server administrator.

OTvar Replacement Variables in JavaScript

In JavaScript, a replacement tag is used as follows:

var myVar = OTvar.component.variablename;

Example: The following declares a variable named imgDir that points to the Content Server
support virtual directory (img, by default)

<script>
...

LLESAPP210100-UGD-EN-01 OpenText™ Content Server 17

var imgDir = OTvar.livelink.supportPath;
...

OTvar_component_variablename.

3.2 Replacement Variables by Component
There are three replacement variable components. Each one contains a number of
replacement variables.

node
Replacement variables in the node component provide information about the
current node. See “Replacement Variables with Information about the Current
Node” on page 18.

currentUser
Replacement variables in the currentUser component provide information
about the current user. See “Replacement Variables with Information about the
Current User” on page 19.

livelink
Replacement variables in the livelink component provide information about
the Content Server system. See “Replacement Variables with Information about
the Content Server System” on page 19.

3.2.1 Replacement Variables with Information about the
Current Node
Replacement Variables with Information about the Current Node

Variable: <ot:OTvar_node_childCount/>
Description: Number of children in this node.

Variable: <ot:OTvar_node_description/>
Description: Description for this node.

Variable: <ot:OTvar_node_createDate/>
Description: Date and time that this node was created. Appears in the following
format: 2008-06-17 16:36:26.

Variable: <ot:OTvar_node_creator/>
Description: Login name of the creator of this node.

Variable: <ot:OTvar_node_ID/>
Description: ID of this node.

Variable: <ot:OTvar_node_parentID/>
Description: ID of this node's parent.

Variable: <ot:OTvar_node_modifyDate/>
Description: Date and time that this node was last modified. Appears in the
following format: 2008-08-25 13:58:30.

Chapter 3 Working with JavaScript Functions for Custom Views and Appearances

18 Custom Views and Appearances LLESAPP210100-UGD-EN-01

Variable: <ot:OTvar_node_name/>
Description: Name of this node.

Variable: <ot:OTvar_node_type/>
Description: Type number of this node.

3.2.2 Replacement Variables with Information about the
Current User

Variable: <ot:OTvar_currentUser_birthday/>
Description: Birthdate of the current user. Appears in the following format:
1974-08-19 00:00:00.

Variable: <ot:OTvar_currentUser_email/>
Description: Email address of the current user.

Variable: <ot:OTvar_currentUser_firstName/>
Description: Current user's first name.

Variable: <ot:OTvar_currentUser_ID/>
Description: Current user's ID.

Variable: <ot:OTvar_currentUser_lastName/>
Description: Current user's last name.

Variable: <ot:OTvar_currentUser_login/>
Description: Current user's login name.

3.2.3 Replacement Variables with Information about the
Content Server System

Variable: <ot:OTvar_livelink_cgiPath/>
Description: Relative path to the Content Server cgi.

Variable: <ot:OTvar_livelink_name/>
Description: Display name for this Content Server install.

Variable: <ot:OTvar_livelink_supportPath/>
Description: Relative path to the Content Server support directory.

3.2. Replacement Variables by Component

LLESAPP210100-UGD-EN-01 OpenText™ Content Server 19

3.3 OTmacro: Macros
The Macros group of classes will have their variable content replaced with actual
Content Server data when the page is loaded. Macros are in the following format:
<ot:variable_name options=""></ot:variable_name>

Variable options can appear in any order. You only need to add options if you want
to alter them.

OTmacro: Macros

Class: OTmacro_debug
Purpose: For debugging only. This class will print out all variables, functions,
and macros available on the current page.

Options

• none

Examples

• <ot:OTmacro_debug></ot:OTmacro_debug>

Class: OTmacro_foldersWithDescriptions
Purpose: Creates a list of Folders that are children of the specified node (defaults
to the current node). Contains descriptions (optionally filtering on the content of
the description).

Options

• contains: a string that must be present in the Folder description in order for it
to be included in the list.

• max: an integer indicating the maximum number of items to include in the
list. The maximum default number of items is 24.

• parentID: an integer indicating the ID of the parent container from which to
get children. Default: current node.

• functionMenus: a boolean that indicates if function menus should be made
available with each item in the list. Default: True.

• icons: a boolean that indicates if icons indicating the item's type should be
included in the list. Default: True.

• columns: an integer between 1 and 4 that indicates the number of columns in
which to display the results. Default: 3 columns.

• classes: a string containing a space separated list of CSS classes to apply to
the resulting list.

• nameFilter: a string that must be present in the name of the item in order for
it to be included in the list.

Chapter 3 Working with JavaScript Functions for Custom Views and Appearances

20 Custom Views and Appearances LLESAPP210100-UGD-EN-01

Examples

• <ot:OTmacro_foldersWithDescriptions/>

• <ot:OTmacro_foldersWithDescriptions options=""></ot:OTmacro_
foldersWithDescriptions>

• <ot:OTmacro_foldersWithDescriptions options=""></ot:OTmacro_
foldersWithDescriptions>

Class: OTmacro_recentlyUpdatedDocuments
Purpose: Creates a list of documents that are children of the specified node
(defaults to the current node) that are the most recently updated.

Options

• max: an integer indicating the maximum number of items to include in the
list. The maximum default number of items is 24.

• parentID: an integer indicating the ID of the parent container from which to
get children. Default: current node.

• functionMenus: a boolean that indicates if function menus should be made
available with each item in the list. Default: True.

• icons: a boolean that indicates if icons indicating the item's type should be
included in the list. Default: True.

• columns: an integer between 1 and 4 that indicates the number of columns in
which to display the results. Default: 3 columns.

• classes: a string containing a space separated list of CSS classes to apply to
the resulting list.

• nameFilter: a string that must be present in the name of the item in order for
it to be included in the list.

Examples

• <ot:OTmacro_recentlyUpdatedDocuments/>

• <ot:OTmacro_recentlyUpdatedDocuments options=""></ot:OTmacro_
recentlyUpdatedDocuments>

Class: OTmacro_listFolders
Purpose: Creates a list of Folders that are children of the specified node (defaults
to the current node).

Options

• max: an integer indicating the maximum number of items to include in the
list. The maximum default number of items is 24.

• parentID: an integer indicating the ID of the parent container from which to
get children. Default: current node.

3.3. OTmacro: Macros

LLESAPP210100-UGD-EN-01 OpenText™ Content Server 21

• functionMenus: a boolean that indicates if function menus should be made
available with each item in the list. Default: True.

• icons: a boolean that indicates if icons indicating the item's type should be
included in the list. Default: True.

• columns: an integer between 1 and 4 that indicates the number of columns in
which to display the results. Default: 3 columns.

• classes: a string containing a space separated list of CSS classes to apply to
the resulting list.

• nameFilter: a string that must be present in the name of the item in order for
it to be included in the list.

Examples

• <ot:OTmacro_listFolders/>

• <ot:OTmacro_listFolders options="max:30"/>

• <ot:OTmacro_listFolders options="max:30, parentID:2000"/>

Class: OTmacro_listContainers
Purpose: Creates a list of containers that are children of the specified node
(defaults to the current node).

Options:

• max: an integer indicating the maximum number of items to include in the
list. The maximum default number of items is 24.

• parentID: an integer indicating the ID of the parent container from which to
get children. Default: current node.

• functionMenus: a boolean that indicates if function menus should be made
available with each item in the list. Default: True.

• icons: a boolean that indicates if icons indicating the item's type should be
included in the list. Default: True.

• columns: an integer between 1 and 4 that indicates the number of columns in
which to display the results. Default: 3 columns.

• classes: a string containing a space separated list of CSS classes to apply to
the resulting list.

• nameFilter: a string that must be present in the name of the item in order for
it to be included in the list.

Examples

• <ot:OTmacro_listContainers/>

• <ot:OTmacro_listContainers options="max:30"/>

• <ot:OTmacro_listContainers options="max:30, parentID:2000"/>

Chapter 3 Working with JavaScript Functions for Custom Views and Appearances

22 Custom Views and Appearances LLESAPP210100-UGD-EN-01

Class: OTmacro_listItems
Purpose: Creates a list of items that are children of the specified node (defaults
to the current node).

Options

• max: an integer indicating the maximum number of items to include in the
list. The maximum default number of items is 24.

• type: an integer indicating the only item type to show. Default: Show All.

• parentID: an integer indicating the ID of the parent container from which to
get children. Default: current node.

• functionMenus: a boolean that indicates if function menus should be made
available with each item in the list. Default: True.

• icons: a boolean that indicates if icons indicating the item's type should be
included in the list. Default: True.

• columns: an integer between 1 and 4 that indicates the number of columns in
which to display the results. Default: 3 columns.

• classes: a string containing a space separated list of CSS classes to apply to
the resulting list.

• nameFilter: a string that must be present in the name of the item in order for
it to be included in the list.

Examples

• <ot:OTmacro_listItems/>

• <ot:OTmacro_listItems options="max:30"/></ot:OTmacro_listItems>

• <ot:OTmacro_listItems options="max:30, parentID:2000"/></
ot:OTmacro_listItems>

• <ot:OTmacro_listItems options="max:30, parentID:2000, type:202"/
></ot:OTmacro_listItems>

Example showing classes

• <ot:OTmacro_listitems options="max:30, parentID:2000,
classes:'firstClass,another'"/>

The options specified in this example result in the unordered lists to have the
classes: "firstClass, another".

<ul start="8" class="firstClass, another">

3.3. OTmacro: Macros

LLESAPP210100-UGD-EN-01 OpenText™ Content Server 23

3.4 OTfunc: Helper Functions
The OTfunc classes are JavaScript functions that may be useful when designing
customized macros. The are not frequently used.

Otfunc: Helper Functions

Class: OTfunc.toDate
Purpose: Returns a date string as is returned by Content Server into a JavaScript
date object.

Input: dateString:<the_string_to_be_converted>.

Output: A JavaScript date object set to the date represented by the string.

Class: OTfunc.substitueAttributeVariable
Purpose: To exchange all occurrences of a given variable founds within a given
attribute with the given value

Input

• attributeName:<the_attribute_to_search_in>

• variableName:<the_name_of_the_variable_being_searched>

• variableValue:<the_value_to_be_substituted>

Output

• none

3.5 User Customizations
It is possible to create custom JavaScript files, replacement variables and macros for
use with Content Server.

3.5.1 Customized JavaScript
You can add your own custom JavaScript file, which will be available within all
Appearances and Custom Views. If you want to add a JavaScript function that
appears in the entire Content Server system, you can add the script to the custom.js
file, located in the root folder of the Content Server support directory.

Note: You must have the proper permissions to access the support directory.
For more information about these permissions, contact your Administrator.

Chapter 3 Working with JavaScript Functions for Custom Views and Appearances

24 Custom Views and Appearances LLESAPP210100-UGD-EN-01

3.5.2 Customvar: User Created Replacement Variables
You can create your own replacement variables, which will be automatically
processed by adding them to the CUSTOMvar JavaScript object.

Example: If you want to create a replacement tag that always shows the most important
objective, you can add the following to the custom.js file:

Customvar.mainObjective='Sell! Sell! Sell!';

Note: When you define a replacement variable, you must use a period (.) after
Customvar instead of an underscore (_).

The Customvar object can be extended inside a script block within an
Appearance. The replacement variable defined will only be available with that
Appearance, and will appear with any Custom Views that display in
conjunction with that particular Appearance.

3.5.3 CUSTOMmacro: User Created Macros
You can create your own macros, which will be automatically processed by adding
them to the CUSTOMmacro JavaScript object.

Example: If you want to create a macro that wishes users happy birthday, you can add the
following to the custom.js file:
CUSTOMmacro.birthdayGreeting = function(options, element){

 var BirthdayString;
 var birthday = OTfunc.toDate(OTvar.currentUser.birthday);
 var today = new Date();
 var age;

 if (birthday.getUTCDate() === today.getUTCDate()
 && birthday.getUTCMonth() === today.getUTCMonth())
 {
 age = today.getUTCFullYear() - birthday.getUTCFullYear();
 BirthdayString = (" Happy Birthday! You are now " + age + " years old.");
 $(element).after(BirthdayString);
 // $(element).before(BirthdayString);
 }
}

Note: The OTVar and OTfunc objects are referenced in order to retrieve the
user's birthday and convert it to a JavaScript date for comparison.

Each macro function is passed in two variables: options and element. The options
variable contains a JavaScript object that contains a named property for each of the
options set in the options attribute of the macro tag.

Example: If you had created the following macro:
CUSTOMmacro.test = function(options, element){

 if (typeof(options.test) != 'undefined')
 {
 $(element).after(options.test);
 // $(element).before(options.test);

3.5. User Customizations

LLESAPP210100-UGD-EN-01 OpenText™ Content Server 25

 } else {

 $(element).after("No test option found");
 // $(element).before(options.test);
 }

}

and then entered <ot:CUSTOMmacro_test options=""></ot:CUSTOMmacro_test> in
an Appearance or Custom View, when the page is viewed, the word hello will appear inside
the macro tag. If the test option is not found, No test option found would be inserted into the
macro tag.

3.6 Adding a JavaScript Function to a Custom View
or Global Appearance
To add a JavaScript function to a custom view:

• Open the customview.html file in an editor, and add the JavaScript functions
that you want to appear when the Custom View is enabled.

Note: You can add the JavaScript functions to a text file and add the text file as
a Custom View.

To add a JavaScript function to a global appearance:

1. Click a Global Appearance Functions icon, and then click Open.

2. On the Global Appearance page, click the Edit icon for the section to which you
want to add a JavaScript function.

3. On the Edit page, type the JavaScript functions that you want to appear in the
text field, and then click Add Version.

Chapter 3 Working with JavaScript Functions for Custom Views and Appearances

26 Custom Views and Appearances LLESAPP210100-UGD-EN-01

	Custom Views and Appearances
	Table of Contents
	Chapter 1 Working with Custom Views
	1.1. Creating and Administering Custom Views
	1.1.1. To Add a Custom View
	1.1.2. To Enable or Disable a Custom View
	1.1.3. To Create a Custom View Template
	1.1.4. To Add a Custom View from a Template

	Chapter 2 Working with Appearances
	2.1. Adding and Editing Appearances
	2.1.1. To Open the Appearances Volume
	2.1.2. To Add an Appearance
	2.1.3. To Edit Appearance Settings
	2.1.4. To Edit Appearance Layout
	2.1.5. To Edit Appearance Components
	2.1.6. To Open an Appearance Workspace

	2.2. Administering Appearances

	Chapter 3 Working with JavaScript Functions for Custom Views and Appearances
	3.1. OTvar Replacement Variables
	3.2. Replacement Variables by Component
	3.2.1. Replacement Variables with Information about the Current Node
	3.2.2. Replacement Variables with Information about the Current User
	3.2.3. Replacement Variables with Information about the Content Server System

	3.3. OTmacro: Macros
	3.4. OTfunc: Helper Functions
	3.5. User Customizations
	3.5.1. Customized JavaScript
	3.5.2. Customvar: User Created Replacement Variables
	3.5.3. CUSTOMmacro: User Created Macros

	3.6. Adding a JavaScript Function to a Custom View or Global Appearance

